PartMaker: автоматизированная разработка управляющих программ для современного оборудования с ЧПУ. Создание программ для станков с чпу Содержание управляющей программы для станков с чпу

Государственное образовательное учреждение

высшего профессионального образования

Московский государственный индустриальный университет

ГОУ ВПО МГИУ

Научно-образовательный материал

Круглый стол на тему «Разработка управляющих программ для станков с ЧПУ с использованием современных CAD/CAM – систем»

Состав научно-образовательного коллектива:

Бурдина Е.А., к.п.н., доцент

Егоркина Е.Б., ведущий инженер

Чичекин И.В., к.т.н.

Москва 2010 г.

Разработка управляющих программ для станков с ЧПУ с использованием современных CAD / CAM – систем.

Целью настоящего курса является повышение квалификации преподавателей высшей школы, связанных с эксплуатацией и обучением на станках с ЧПУ.

Процесс подготовки управляющей программы, проверки её на ЧПУ и окончательной отработки на станке, требует специальной подготовки в данной области.

Программой предусмотрен теоретический курс, а также практические занятия с использованием трех координатного вертикально фрезерного многоцелевого станка MIKRON 600 Рro c системой ЧПУ Heidenhain TNC530, токарно-фрезерного обрабатывающего центра INDEX ABC с системой ЧПУ Sinumeric.

"Подготовка и контроль управляющих программ для станков с ЧПУ фрезерной группы "

Тема 1. Введение. Вертикальный фрезерный многоцелевой станок с ЧПУ модели MIKRON 600 Pro. Назначение и область использования станка. Основные узлы и технические характеристики станка. Режимы резания.

Тема 2. Pro ENGINEER . Построение геометрической модели, используя элемент Эскизирование. Создание твердого тела, формирующего типовую корпусную деталь.

Тема 3.

Тема 4. GPost .

Тема 5. Heidenhain TNC 530. Устройство имитационной панели управления. Управление файлами. Работа с таблицами инструментов. Данные инструмента. Коррекция инструмента.

Тема 6. Heidenhain . Движение инструмента. Функции траектории. Программирование контуров. Работа с применением циклов.

Тема 7. Ручное программирование контуров в кодах ISO .

Тема 8. Визуальный контроль траектории движения инструмента. Проверка программ оператором. Непосредственная обработка детали на станке.

"Подготовка и контроль управляюих программ для станков с ЧПУ токарной группы "

1. Тематическое содержание курса

Тема 1. Введение. Токарно-фрезерный обрабатывающий центр с ЧПУ модели INDEX ABC. Назначение и область использования станка. Основные узлы и технические характеристики станка. Режимы резания.

Тема 2. Основы геометрического моделирования в среде Pro ENGINEER . Построение геометрической модели, используя элемент Эскизирование. Создание твердого тела, формирующего типовую деталь для токарной обработки.

Тема 3. Разработка управляющих программ. Проектирование заготовки. Расчет технологических параметров производства. Создание таблицы инструментов. Построение траектории обработки. Получение управляющей программы.

Тема 4. Генерирование управляющих программ с помощью постпроцессора, используя встроенное приложение GPost . Основные функции. Выбор постпроцессора.

Тема 5. Основы ручного программирования SINUMERIC . Управление файлами. Работа с таблицами инструментов. Данные инструмента. Коррекция инструмента. Синхронизация инструментальых головок.

Тема 6. Ручное программирование контуров используя стандартные циклы. Токарные циклы. Циклы сверления. Функции траектории. Программирование контуров. Работа с применением циклов.

Тема 7. Ручное программирование контуров в кодах ISO . Основные функции. Вспомогательные функции. Формат кадра. Программирование контуров.

Тема 8. Визуальный контроль траектории движения инструмента используя вертуальную машину. Принцип работы, основные функции. Проверка программ оператором.

Тема 9. Обучение работе на оборудовании. Составление управляющих программ. Работа на оборудовании. Непосредственная обработка детали на станке.

Токарная обработка.

Токарный многоцелевой станок фирмы INDEX модели АВС предназначен для обработки широкой номенклатуры деталей тел вращения сравнительно простых геометрических форм, как на автомате (прутковый вариант заготовки), так и как на станке с ЧПУ для деталей сложной геометрической формы (обработка индивидуальных заготовок). Таким образом, станок INDEX модели АВС объединил преимущества автомата для обработки прутков с кулачковым управлением и универсального токарного станка с ЧПУ.

Необходимость совмещения на одном станке двух принципов обработки деталей определяется развивающейся в настоящее время технологии обработки мелких деталей, высокая эффективность обработки которых достигается использованием принципа продольного точения с подающей цангой.

Автоматы с подающей цангой могут работать с прутками диаметром до 22 мм. Большинство таких станков управляются от ЧПУ. Практически всегда станок комплектуется специальным устройством, автоматически подающим пруток в зону обработки через цанговый патрон.

Расширенные технологические возможности станка обеспечиваются широкой номенклатурой режущего инструмента и соответствующее этому количество инструментальных головок. Наличие, например, на станке 19 инструментов обеспечивает полную обработку подавляющей номенклатуры деталей изготавливаемых из прутка.

Для рассматриваемого варианта станка сегодня комплект режущего инструмента представляет собой оптимизированный набор, обеспечивающего следующие операции обработки деталей: токарные, резьбовые, отрезные, канавочные, а также расточные.. В этих инструментах используются все преимущества современных твердосплавных материалов с износостойкими покрытиями и сменных пластин, которые полностью используют возможности станка.

Требования к инструменту для мелкоразмерной обработки несколько отличаются от обычных требований. Эти требования должны обеспечивать следующие особенности мелкоразмерной обработки: более высокую точность и качество обработки; возможность обработки любых материалов; более внимательный контроль над процессом образования стружки; производить обработку с высокой производительностью.

Рис. 1 . Разновидности многогранных пластин, рекомендуемые к использованию мелкоразмерной обработки: 1 – для отрезки и обточки канавок; 2 – для нарезания резьбы; 3 – для отрезки труб и деталей небольшого диаметра; 4 – для наружного точения; 5 – для растачивания внутренних диаметров; 6 – для отрезки, обработки канавок, нарезания резьбы; 7 – обработка канавок; 8 – наружная резьба; 9 – наружное точение; 10 – внутренняя резьба; 11 – для внутреннего точения, обработки канавок и нарезания резьбы

Компоновка и основные узлы станка

Основание станка представляет собой сварную стальную конструкцию, на которой установлена наклонная станина с двумя независимыми револьверными головками. Такая конструкция обладает хорошей демпфирующей способностью, а также создает оптимальные условия для выполнения точной обработки, поскольку структура несущей части станка обладает высокой устойчивостью к изгибу и кручению, возникающим в результате процесса резания.

Все линейные перемещения по координатам происходят по направляющим качения, которые изготовлены с высокой точностью и обладают особой чувствительностью к малым перемещениям. Соединения с силовым замыканием между шпиндельной коробкой и станиной, а также предохранительные муфты на всех шариковых ходовых винтах защищают работоспособность станка от возможных непредвиденных столкновений и иных нестандартных ситуаций.

Благоприятные термодинамические условия работы станка обеспечиваются симметричной конструкцией шпиндельной коробки и контролем изменяющейся в процессе резания температуры, а также перпендикулярным расположением шпиндельной коробки к инструментальной плоскости.

Основные преимущества станка следующие:

Компактная конструкция станка, занимающая сравнительно небольшую площадь;

Сокращение штучного времени за счет обработки заготовки с двух сторон и с использованием до 3-х инструментов, работающих одновременно;

Возможность работы приводных (вращающихся) инструментов на всех суппортах станка;

Возможность обработки стальных многогранных прутков;

Удобное и доступное для наладки рабочее пространство станка.

На рис. 2 показаны основные узлы, входящие в состав станка,. Для наглядности станок представлен в виде открытом от защитных устройств и внешнего ограждения.


Рис.2 . Узлы токарного многоцелевого станка с ЧПУ Index серии ABC: 1 – основание; 2 – второй револьверный суппорт; 3 – мотор-шпиндель; 4 – главный привод; 5 – суппорт для обработки тыльной стороны детали; 6 – первый револьверный суппорт; 7 – наклонная станина; 8 – привод подачи

Перед любым владельцем станка с ЧПУ встает вопрос выбора программного обеспечения. Софт, используемый для подобного технологического оборудования, должен быть многофункциональным и простым в использовании. Желательно приобретать лицензионные программные продукты. В этом случае программы для станков с ЧПУ не будут зависать, что позволит повысить эффективность производственных процессов.

Набор программного обеспечения для станков с ЧПУ

Выбор софта во многом зависит от типа оборудования и тех задач, которые пользователь намерен решить. Однако существуют универсальные программы, которые можно использовать практически для всех видов станков с ЧПУ. Наибольшее распространение получили следующие продукты:


1. . Этот программный пакет был разработан для моделирования и проектирования изделий, изготавливаемых на станках. Он оснащен функцией автоматического генерирования моделей из плоских рисунков. Пакет программ ArtCAM содержит все необходимые инструменты для дизайна креативных изделий и создания сложных пространственных рельефов.
Стоит отметить, что данный софт позволяет использовать трехмерные шаблоны для создания проектов будущих изделий из простых элементов. Кроме того, программа позволяет пользователю вставлять один рельеф в другой, как в двухмерном рисунке.


2. Универсальная программа управления LinuxCNC. Функциональным назначением этого софта является управление работой станка с ЧПУ, отладка программы обработки деталей и многое другое.
Подобный программный пакет можно использовать для обрабатывающих центров, фрезерных и токарных станков, а также машин для термической или лазерной резки.
Отличием этого продукта от других программных пакетов является то, что его разработчики частично совместили его с операционной системой. Благодаря этому программу LinuxCNC отличается расширенными функциональными возможностями. Скачать этот продукт можно совершенно бесплатно на сайте разработчика. Она доступна как в виде инсталяционного пакета, так и в виде LifeCD.
Пользовательский интерфейс этого программного обеспечения интуитивно понятный и доступный. Для бесперебойного функционирования софта на жестком диске компьютера должно быть не меньше 4 гигабайтов свободной памяти. Подробное описание программы LinuxCNC можно найти в свободном доступе в интернете.


3. . У этого программного обеспечения огромная армия поклонников во всех странах мира. Софт используется для управления фрезерными, токарными, гравировальными и другими видами станков с ЧПУ. Этот пакет программ можно установить на любой компьютер с операционной системой Windows. Преимуществом использования данного софта является его доступная стоимость, регулярные обновления, а также наличие русифицированной версии, что облегчает использование продукта оператором, не владеющим английским языком.



4. Mach4. Это новейшая разработка компании Artsoft. Mach4 считается преемницей популярной программы Mach3. Программа считается одной из самых быстрых. Ее принципиальное отличие от предыдущих версий заключается в наличии интерфейса, который взаимодействует с электроникой. Это новое программное обеспечение может работать с большими по объему файлами в любой операционной системе. Пользователю доступно руководство по использованию программы Mach4 на русском языке.



5. MeshCAM. Это пакет для создания управляющих программ для станков с ЧПУ на основе трехмерных моделей и векторной графики. Примечательно, что пользователю необязательно обладать богатым опытом CNC-программирования, чтобы освоить этот софт. Достаточно обладать базовыми навыками работы на компьютере, а также точно задавать параметры, по которым будет производиться обработка изделий на станке.
MeshCAM идеально подходит для проектирования двухсторонней обработки любых трехмерных моделей. В этом режиме пользователь сможет быстро обрабатывать на станке объекты любой сложности.


6. SimplyCam. Это компактная и многофункциональная система для создания, редактирования, сохранения чертежей в формате DXF. Это обеспечение генерирует управляющие программы и G-коды для станков с ЧПУ. Они создаются по растворным рисункам. Пользователь может создать изображение в одной из графических программ своего компьютера, а затем загрузить его в SimplyCam. Программа оптимизирует этот рисунок и переведет его в векторный чертеж. Пользователь также может использовать такую функцию, как ручная векторизация. В этом случае изображение обводится стандартными инструментами, которые используются в AutoCAD. SimplyCam создает траектории обработки изделий на станках с ЧПУ.



7. CutViewer. Это программа имитирует обработку с удалением материала на двухосевых станках с ЧПУ. С ее помощью пользователь может получить визуализацию обрабатываемых заготовок и деталей. Использование этого софта позволяет повысить производительность технологического процесса, устранить имеющиеся ошибки в программировании, а также сократить временные затраты на проведение отладочных работ. Программа CutViewer совместима с широким спектром современного станочного оборудования. Ее действенные инструменты позволяют обнаружить серьезные ошибки в технологическом процессе и своевременно их устранить.



8. CadStd. Это простая в использовании чертежная программа. Она используется для создания проектов, схем и графики любой сложности. С помощью расширенного набора инструментов этой программы пользователь может создать любые векторные чертежи, которые могут использоваться для проектирования фрезерной или плазменной обработки на станках с ЧПУ. Созданные DXF-файлы можно впоследствии загрузить в CAM-программы, чтобы генерировать правильные траектории обработки деталей.

Управляющая программа для ЧПУ станка состоит из последовательности кадров и обычно начинается с символа начало программы (%) и заканчивается М02 или М30.

Каждый кадр программы представляет собой один шаг обработки и (в зависимости от ЧПУ) может начинаться с номера кадра (N1...N10 и т.д.), а заканчиваться символом конец кадра (;).

Кадр управляющей программы состоит из операторов в форме слов (G91, M30, X10. и т.д.). Слово состоит из символа (адреса) и цифры, представляющее арифметическое значение.

Адреса X, Y, Z, U, V, W, P, Q, R, A, B, C, D, E являются размерными перемещениям, используют для обозначения координатных осей, вдоль которых осуществляются перемещения.

Слова, описывающие перемещения, могут иметь знак (+) или (-). При отсутствии знака перемещение считается положительным.

Адреса I, J, K означают параметры интерполяции.

G - подготовительная функция.

M - вспомогательная функция.

S - функция главного движения.

F - функция подачи.

T, D, H - функции инструмента.

Символы могут принимать другие значения в зависимости от конкретного УЧПУ.

Подготовительные функции (G коды)

G00 - быстрое позиционирование.

Функция G00 используется для выполнения ускоренного перемещения режущего инструмента к позиции обработки или к безопасной позиции. Ускоренное перемещение никогда не используется для выполнения обработки, так как скорость движения исполнительного органа станка очень высока. Код G00 отменяется кодами: G01, G02, G03.

G01 - линейная интерполяция.

Функция G01 используется для выполнения прямолинейных перемещений с заданной скоростью (F). При программировании задаются координаты конечной точки в абсолютных значениях (G90) или приращениях (G91) с соответственными адресами перемещений (например X, Y, Z). Код G01 отменяется кодами: G00, G02, G03.

G02 - круговая интерполяция по часовой стрелке.

Функция GO2 предназначена для выполнения перемещения инструмента по дуге (окружности) в направлении часовой стрелки с заданной скоростью (F). При программировании задаются координаты конечной точки в абсолютных значениях (G90) или приращениях (G91) с соответственными адресами перемещений (например X, Y, Z).

Код G02 отменяется кодами: G00, G01, G03.

G03 - круговая интерполяция против часовой стрелки.

Функция GO3 предназначена для выполнения перемещения инструмента по дуге (окружности) в направлении против часовой стрелки с заданной скоростью (F). При программировании задаются координаты конечной точки в абсолютных значениях (G90) или приращениях (G91) с соответственными адресами перемещений (например X, Y, Z).

Параметры интерполяции I, J, K, которые определяют координаты центра дуги окружности в выбранной плоскости, программируются в приращениях от начальной точки к центру окружности, в направлениях, параллельных осям X, Y, Z соответственно.

Код G03 отменяется кодами: G00, G01, G02.

G04 - пауза.

Функция G04 - команда на выполнение выдержки с заданным временем. Этот код программируется вместе с X или Р адресом, который указывает длительность времени выдержки. Обычно, это время составляет от 0.001 до 99999.999 секунд. Например G04 X2.5 - пауза 2.5 секунды, G04 Р1000 - пауза 1 секунда.

G17 - выбор плоскости XY.

Код G17 предназначен для выбора плоскости XY в качестве рабочей. Плоскость XY становится определяющей при использовании круговой интерполяции, вращении системы координат и постоянных циклов сверления.

G18 - выбор плоскости XZ.

Код G18 предназначен для выбора плоскости XZ в качестве рабочей. Плоскость XZ становится определяющей при использовании круговой интерполяции, вращении системы координат и постоянных циклов сверления.

G19 - выбор плоскости YZ.

Код G19 предназначен для выбора плоскости YZ в качестве рабочей. Плоскость YZ становится определяющей при использовании круговой интерполяции, вращении системы координат и постоянных циклов сверления.

G20 - ввод дюймовых данных.

Функция G20 активизирует режим работы с дюймовыми данными.

G21 - ввод метрических данных.

Функция G21 активизирует режим работы с метрическими данными.

G40 - отмена коррекции на радиус инструмента.

Функция G40 отменяет действие автоматической коррекции на радиус инструмента G41 и G42.

G41 - левая коррекция на радиус инструмента.

Функция G41 применяется для включения автоматической коррекции на радиус инструмента находящегося слева от обрабатываемой поверхности (если смотреть от инструмента в направлении его движения относительно заготовки). Программируется вместе с функцией инструмента (D).

G42 - правая коррекция на радиус инструмента.

Функция G42 применяется для включения автоматической коррекции на радиус инструмента находящегося справа от обрабатываемой поверхности (если смотреть от инструмента в направлении его движения относительно заготовки). Программируется вместе с функцией инструмента (D).

G43 - коррекция на положение инструмента.

Функция G43 применяется для компенсации длинны инструмента. Программируется вместе с функцией инструмента (H).

G52 - локальная система координат.

СЧПУ позволяет устанавливать кроме стандартных рабочих систем координат (G54-G59) еще и локальные. Когда СЧПУ станка выполняет команду G52, то начало действующей рабочей системы координат смещается на значение указанное при помощи слов данных X, Y и Z. Код G52 автоматически отменяется с помощью команды G52 ХО YO Z0.

G54 - G59 - заданное смещение.

Смещение рабочей системы координат детали относительно системы координат станка.

G68 - вращение координат.

Код G68 позволяет выполнить поворот координатной системы на определенный угол. Для выполнения поворота требуется указать плоскость вращения, центр вращения и угол поворота. Плоскость вращения устанавливается при помощи кодов G17, G18 и G19. Центр вращения устанавливается относительно нулевой точки активной рабочей системы координат (G54 - G59). Угол вращения указывается при помощи R. Например: G17 G68 X0. Y0. R120.

G69 - отмена вращения координат.

Код G69 отменяет режим вращения координат G68.

G73 - высокоскоростной цикл прерывистого сверления.

Цикл G73 предназначен для сверления отверстий. Движение в процессе обработки происходит на рабочей подаче с периодическим выводом инструмента. Движение в исходное положение после обработки идет на ускоренной подаче.

G74 - цикл нарезания левой резьбы.

Цикл G74 предназначен для нарезания левой резьбы метчиком. Движение в процессе обработки происходит на рабочей подаче, шпиндель вращается в заданном направлении. Движение в исходное положение после обработки идет на рабочей подаче с обратным вращением шпинделя.

G80 - отмена постоянного цикла.

Функция, которая отменяет любой постоянный цикл.

G81 - стандартный цикл сверления.

Цикл G81 предназначен для зацентровки и сверления отверстий. Движение в процессе обработки происходит на рабочей подаче. Движение в исходное положение после обработки идет на ускоренной подаче.

G82 - сверление с выдержкой.

Цикл G82 предназначен для сверления и зенкования отверстий. Движение в процессе обработки происходит на рабочей подаче с паузой в конце. Движение в исходное положение после обработки идет на ускоренной подаче.

G83 - цикл прерывистого сверления.

Цикл G83 предназначен для глубокого сверления отверстий. Движение в процессе обработки происходит на рабочей подаче с периодическим выводом инструмента в плоскость отвода. Движение в исходное положение после обработки идет на ускоренной подаче.

G84 - цикл нарезания резьбы.

Цикл G84 предназначен для нарезания резьбы метчиком. Движение в процессе обработки происходит на рабочей подаче, шпиндель вращается в заданном направлении. Движение в исходное положение после обработки идет на рабочей подаче с обратным вращением шпинделя.

G85 - стандартный цикл растачивания.

Цикл G85 предназначен для развертывания и растачивания отверстий. Движение в процессе обработки происходит на рабочей подаче. Движение в исходное положение после обработки идет на рабочей подаче.

G86 - цикл растачивания с остановкой вращения шпинделя.

Цикл G86 предназначен для растачивания отверстий. Движение в процессе обработки происходит на рабочей подаче. В конце обработки происходит остановка шпинделя. Движение в исходное положение после обработки идет на ускоренной подаче.

G87 - цикл растачивания с отводом вручную.

Цикл G87 предназначен для растачивания отверстий. Движение в процессе обработки происходит на рабочей подаче. В конце обработки происходит остановка шпинделя. Движение в исходное положение после обработки идет вручную.

G90 - режим абсолютного позиционирования.

В режиме абсолютного позиционирования G90 перемещения исполнительных органов производятся относительно нулевой точки рабочей системы координат G54-G59 (программируется, куда должен двигаться инструмент). Код G90 отменяется при помощи кода относительного позиционирования G91.

G91 - режим относительного позиционирования.

В режиме относительного (инкрементального) позиционирования G91 за нулевое положение каждый раз принимается положение исполнительного органа, которое он занимал перед началом перемещения к следующей опорной точке (программируется, на сколько должен переместиться инструмент). Код G91 отменяется при помощи кода абсолютного позиционирования G90.

G94 - скорость подачи в дюймах/миллиметрах в минуту.

При помощи функции G94 указанная скорость подачи устанавливается в дюймах за 1 минуту (если действует функция G20) или в миллиметрах за 1 минуту (если действует функция G21). Программируется вместе с функцией подачи (F). Код G94 отменяется кодом G95.

G95 - скорость подачи в дюймах/миллиметрах на оборот.

При помощи функции G95 указанная скорость подачи устанавливается в дюймах на 1 оборот шпинделя (если действует функция G20) или в миллиметрах на 1 оборот шпинделя (если действует функция G21). Т.е. скорость подачи F синхронизируется со скоростью вращения шпинделя S. Код G95 отменяется кодом G94.

G98 - возврат к исходной плоскости в цикле.

Если постоянный цикл станка работает совместно с функцией G98, то инструмент возвращается к исходной плоскости в конце каждого цикла и между всеми обрабатываемыми отверстиями. Функция G98 отменяется при помощи G99.

G99 - возврат к плоскости отвода в цикле.

Если постоянный цикл станка работает совместно с функцией G99, то инструмент возвращается к плоскости отвода между всеми обрабатываемыми отверстиями. Функция G99 отменяется при помощи G98.

G-код (УП) можно создать вручную или автоматизировано в таких программах, например, как ArtCam .

На исполнение G-код запускается в программах управления станком Mach3 и KCam .

Компания Metal Working Group оказывает профессиональные конструкторские услуги в сфере машиностроения.

Нами выполняется разработка управляющих программ для станков с ЧПУ и их подготовка, при помощи СAM приложений для ЧПУ Siemens Sinumerik , Fanuc , Mazatro l, Fagor .

Только у нас имеется лицензионное программное обеспечение для написания программ для станков с ЧПУ Mazak - MAZATROL Matrix CAM .

Для других систем ЧПУ написание программ для станков с ЧПУ и подготовка ведется в программах SprutCAM , Cimco , CAMWorks .

У нас имеется большая база постпроцессоров практически для всех видов станков с ЧПУ.

Так же возможно написание в ручную (G-, M- коды ) разрабатываемых управляющих программ для станков с ЧПУ.

Выполняем написание управляющих программ для стоек ЧПУ LJUMO (Люмо) и К524 .

Разрабатываем необходимую техническую документацию.

В комплексе предлагаем разработку 3D модели для станков ЧПУ по весьма демократичным ценам

Имеется богатый опыт создания 3d моделей для станков ЧПУ. Глубокое знание всего технологического процесса даёт нашим специалистам конкурентное преимущество. Мы создаём готовые 3d модели для станков ЧПУ высокого качества с учётом всех пожеланий заказчика.

Cоздаём универсальные 3D модели для станков с ЧПУ. Это значит, что наши 3D модели для станков ЧПУ могут быть использованы в любой программе, предназначенной для обработки по этой технологии.

Обратившись в нашу компанию, вы получите:

  • оперативность и своевременность разработки модели;
  • доступные цены,
  • сжатые сроки выполнения проектов
  • высокое качество выполняемой работы.

В сфере разработки управляющих программ и 3D моделей для станков с ЧПУ мы работаем с заказами повышенной сложности. Сотрудничаем заказчиками разного уровня: малым и среднем бизнесом, крупными предприятиями и частными клиентами.

У нас вы найдете доступные цены, сжатые сроки выполнения проектов и качество выполняемой работы.

Оценка стоимости Вашего заказа нашими специалистами проводится БЕСПЛАТНО .
Время оценки стоимости заказа занимает менее
2 часов .

С полным списком наших услуг, можете ознакомиться в разделе Наши услуги

Если у вас возникли вопросы, будем рады вам ответить.

О станках ЧПУ

Современные станки ЧПУ отличаются высокой эффективностью управления, которая достигается за счёт системы числового программного управления. Все операции производятся на основе параметров, которые задаёт оператор станка. Такая система не требует присутствия большого количества персонала, что делает процесс управления станком ЧПУ выгодным и доступным для широкого круга пользователей.

Современные станки ЧПУ оборудованы системами самонастройки. В ходе работы над первой деталью система проводит оптимизацию настроек, с учётом которых идёт дальнейшая работа. После получения оптимальных параметров работы идёт обработка всей партии. Такая технология может быть применена в различных технологиях обработки.

Основным преимуществами работы станков ЧПУ являются:

  • Оптимизация трудозатрат (значительное уменьшение количество работников);
  • Оптимизация затрат на оборудование и организацию рабочих площадей (один станок ЧПУ заменяет несколько обычных);
  • Увеличение производительности и коэффициентов эффективности рабочего времени;
  • Сокращение сроков производства (на 50%);
  • Увеличения показателей точности производимых работ (на 30-50 %).

Управляющая программа для станка с ЧПУ – составляющая станочного оборудования с числовым программным управлением. С ее помощью обеспечивается автономная или полуавтономная обработка заготовок. Этот компонент позволяет получить качественное и точное изготовление деталей, имеющих сложные формы. Разработка управляющей программы требует специальных навыков.

Предназначение

Управляющая программа обеспечивает контроль над станками на числовом программном управлении. без необходимости постоянного слежения. Она представляет собой комплекс команд, которые подаются рабочему оборудованию.

При помощи команд:

  • перемещаются инструменты;
  • перемещаются заготовки;
  • контролируется скорость обработки.

Написание программы осуществляется под конкретные заготовки. Для ее создания необходимо установить на компьютер специальную программу. Наличие подобного софта позволит создать методики контроля самостоятельно при наличии базовых навыков.

Программное управление бывает дискретным и контурным. Первый вариант используется для обработки заготовок с простыми формами. Он позволяет выполнить базовые функции. УП второго типа предназначен для сложной обработки. Он чаще всего используется на токарных и . Обработка осуществляется в зависимости от характеристик конкретного прибора. На их основе выполняются заданные функции.

Чтобы создать технологическую операцию, необходимо получить информацию о:

  • поверхности детали;
  • рабочих инструментах;
  • величине припуска;
  • числе проходов для каждой поверхности;
  • режиме резания.

Также необходимо запомнить, в каком положении инструменты находились изначально, и по какой траектории они будут двигаться. Определение траектории вычисляется на основе координат опорных точек.

При помощи управляющей программы можно выполнить:

  • токарные работы;
  • фрезеровку;
  • шлифовальные работы.

Софт может использоваться для нескольких задач сразу.

Его можно скачать в интернете бесплатно, или же воспользоваться платными приложениями. Платные приложения могут отличаться наличием дополнительных возможностей.

Создание

Методика создания УП включает несколько этапов. На первом этапе создания управляющей программы строится цифровая модель изделия. После этого проводится программный анализ. С его помощью модель можно разделить на точки, чтобы разработать систему координат. По ней будут двигаться инструменты и заготовка в ходе работы.

Создать программу без трехмерной модели изделия не получится. Данная задача выполняется специалистом. Также уже готовые модели можно скачать в интернете, но нет гарантии, что они подойдут для нужной работы.

При изготовлении программ для станков с ЧПУ можно использовать системы автоматизированного программирования, самыми популярными из которых являются:

  • AutoCAD;
  • NanoCAD;
  • T-FlexCAD;
  • ArtCam;
  • SolidWorks.

При помощи программного обеспечения можно изменить характеристики будущего изделия. Чем больше будет собранного информации, тем более точной будет обработка. На завершающем этапе разрабатываются управляющие команды, которые будут объединены в файл.

Обработкой файла будет заниматься процессор. Информация с файла считывается последовательно. Поэтому команды выполняются друг за другом. Программу легко записать на обычном компьютере и подключить ее при помощи флешки. Затем она будет записана в память компьютера, управляющего станком, и использовать ее не понадобится. С самой программой можно будет осуществлять серийную разработку деталей.

Основной составляющей управляющих программ является G-код. Он состоит из числовых символов. Символы числовой системы могут быть различными командами:

  • технологическими;
  • геометрическими;
  • подготовительными;
  • вспомогательными.

Первый тип отвечает за определение рабочего инструмента, скорость обработки, включение и выключение прибора. Второй тип определяет и контролирует заданные координаты. Третий тип позволяет программе управлять станком, а также задает режимы производства. Последний тип включает и выключает отдельные механизмы. Разобраться в коде может технолог-программист.

При покупке оборудования следует инструкция, в которой указано, как правильно создавать числовое программное управление, и использовать различные типы команд.

Виды программ

При создании программы для станков необходимо учесть целый комплекс вопросов:

  • на каких оборотах способен работать шпиндель;
  • на каких скоростях он может работать;
  • с какой производительностью способен работать станок;
  • насколько может перемещаться рабочий инструмент;
  • сколько инструментов может использовать станок.

Большинство вопросов связаны с характеристиками станка. Для определения необходимых данных достаточно воспользоваться инструкцией, которая следует вместе с оборудованием при его покупке. Некоторые управляемые станки могут иметь дополнительные функции. Их также нужно учитывать при программировании, иначе обработка может осуществляться неточно. Список дополнительных функций также имеется в инструкции.

Не существует универсальных программ для передачи команд станку. Список самых востребованных состоит из программ для:

  • разработки трехмерных моделей;
  • быстрого просмотра и редактирования трехмерных моделей;
  • конвертации файлов из одного формата в другой;
  • создания и предварительного просмотра УП;
  • выполнения задач на станке.

Управляющие программы позволяют станкам изготовлять сложные изделия. Детали со сложной формы могут быть изготовлены из древесины, металла, камня. На специальных станках можно обработать менее используемые материалы.

Преимущества

Управляющая программа помогает упросить производственный процесс в несколько раз. На станках с ЧПУ не требуется больше одного , и работает по простой методике. УП экономят время и повышают точность обработки.

Они используются при:

  • изготовлении рекламных баннеров;
  • дизайнерском оформлении помещения;
  • порезке и раскрое листового материала;
  • изготовлении сувенирных изделий.

При помощи современных приложений составить управляющую программу может человек, не имеющий образования в области программирования. Благодаря поддержке различных операционных систем, запустить УП можно практически на любом компьютерном устройстве, связанным со станком с системой числового программного управления. Недостаток программных приложений заключается в периодическом возникновении ошибок.

Виды ошибок

Ошибки возникают чаще всего при разработке УП для обработки деталей, имеющих сложные формы. Наиболее частой причиной является недостаточная подготовка оператора-программиста. Поэтому УП должны разрабатываться подготовленными сотрудниками.

Ошибки бывают трех типов:

  • герметического;
  • технологического;
  • перфорационного.

Первый вид ошибок возникает на этапе расчетов. В большинстве случаев они связаны с нарушением параметров заготовки, вычислении координат опорных точек, определения положения рабочих инструментов станочного прибора.

Технологические ошибки возникают, когда станок настраивается. Их причина заключается в неправильно заданной скорости, параметров обработки, и других команд, задаваемых для оборудования с ЧПУ. Третий тип ошибок возникает в перфорированной ленте или перфораторе.